热刺激网络延时荧光
为了克服**代和**代OLED材料的不足,人们研究开发了新一代的热活化延迟荧光材料(TADF),也称为E型延迟荧光材料。
TADF的激发态可以通过捕获三重激发态激子,使器件的荧光发射增强,从而实现接近**的内部量子效率。
目前TADF材料的实验研究已经取得了快速发展,人们已设计合成出来了大量的具有TADF发光性能的有机分子。
同时,有关TADF发光机理的理论研究也在不断地深入进行。
延缓荧光的形成生理机制
TADF材料因吸收环境的热量,促使三重态.上的激子通过反系间窜越(RISC)过程转化为单重态激子,因此三重态激子得到了充分利用,其内量子效率(IEQ)几乎可以达到**。
显然,升高温度能够促进RISC过程的进行,从而增加荧光效率。图1-1为TADF分子的发光机理图。TADF发光包含瞬时荧光(PF)和延迟荧光(DF)两种机理18-9]。瞬时荧光是S|态上25%的激子随即辐射失活衰减到电子基态(So),寿命是ns级的。延迟荧光是T态上75%的激子**窜越到S|态后辐射失活,发射荧光,寿命是μs级的。
热活化延迟荧光是一种特殊的荧光现象,当三重态激发态(T1)和单重态激发态(S)能量接近时,三重态激子可以通过RISC过程转化为单重态激子而发出荧光
因此,足够小的单重态-三重态能量差(OEsr)是至关重要的,是实现**的RISC过程所必须的。根据玻尔兹曼分布关系,RISC 速率常数与△Est成反比,而减小分子的AEsT可通过分离分子的较高占据分子轨道(HOMO)和较低未占据分子轨道(LUMO)来实现。所以,设计具有小的AEsT和具有TADF性质的分子是一个具有挑战性的工作。
西安pg电子娱乐游戏app
生物科技有限公司提供金属配合物,热激活延迟荧光(TADF)材料,聚集诱导延迟荧光(AIDF)材料,聚集诱导发光AIE材料的定制合成