FA-PEG-PEI修饰磁性纳米载体在TFPI-2 pDNA吸附与保护中的性能研究
文献:Preparation and Characterization of Folate-Targeted Fe3O4 Nanoparticle Codelivering Cisplatin and TFPI-2 Plasmid DNA for Nasopharyngeal Carcinoma Therapy
作者:Juan Zhang, Huanhuan Weng, Xiangwan Miao, Quanming Li, Siqi Wang, Huifen Xie, Tao Liu, Minqiang Xie
文献链接://onlinelibrary.wiley.com/doi/full/10.1155/2017/2849801
摘要:
The FA-PEG-PEI@SPION-CDDP was constructed with SPION-CDDP (core) and FA-PEG-PEI (shell). Numerous detached electropositive amino groups in the shell covered SPION-CDDP nanoparticles were able to electrostatically adsorb electronegative TFPI-2 pDNA. To explore the binding ability of FA-PEG-PEI@SPION-CDDP with TFPI-2 pDNA, gel electrophoresis was observed in Figure 3(a). It was found that with the increasing mass ratio of FA-PEG-PEI@SPION-CDDP/TFPI-2 {Figure 3(a)~B (1 : 4) → C (1 : 2) → D (1 : 1)}, more TFPI-2 was blocked in sample well. When the mass ratio was equal to or more than 2 (Figure 3(a)~E), TFPI-2 pDNA was restricted completely in the well, indicating entirely adsorption and encapsulation by FA-PEG-PEI@SPION-CDDP. As a result, the relative mass ratio was determined as 2 : 1 to synthesize the final complex. To investigate the protection of TFPI-2-loaded complex (FA-PEG-PEI@SPION-CDDP-TFPI-2) against DNase-I degrading, FA-PEG-PEI@SPION-CDDP was mixed with overdose TFPI-2, then various content of DNase-I was added to run electrophoresis. As shown in Figure 3(b), compared with TFPI-2 migration without DNase-I in Figure 3(a)~B, the more DNase-I was added, the more detached TFPI-2 was degraded with more fade band of TFPI-2 migration. When DNase-I was equal to or higher than 15 units, the detached TFPI-2 (Figure 3(b)~J, K) was entirely digested except for the sample well. This evidence shed light on the enzymatic hydrolysis of DNase-I in TFPI-2 pDNA and indicated that FA-PEG-PEI@SPION-CDDP is feasible in adsorbing TFPI-2 and protecting pDNA from degradation. Thus pDNA could avoid digestion by DNase in media or blood before reaching the targeted cells, leading to an efficient transfection in tumors.