Bi2S3-SiO2 NRs/二防氧化硅涂覆混炼铋纳米级棒多模态成像剂可于胃消化道道GI显像技術
借助浓盐酸钡透明桌面液作X光成像剂代替直肠显像,会因为其自个配备的非分解非常他的不完美的基本特征使其在肠胃道脱落及肠子成分观察上给予大禁止;的通用的肠胃道成像剂大便次数多碘代碳原子,但以自身的原本X电子束吸取率较低,之所以往往要大分子量动用才会做到满意的体验,这每每会使病号出现碘过敏反应迟钝性反应迟钝。
提纯实现二腐蚀硅涂覆的塑炼铋奈米棒(Bi2S3@SiO2 NRs)身为多模态显影液剂于直直肠的无的危害性随时激光散斑同时立即观察其在直直肠下面的经流流程(Scheme 1)。经二被氧化硅发泡密封条后,在胃及直肠中,Bi2S3@SiO2 NRs体显出非常的好的水可溶,动物混溶性并且 可靠性。根据TEM都可以分辨出,Bi2S3 NRs宽约10 nm,全长约50 nm,要素进行分析谱图界面显示成功失败制得能够 高饱和度的Bi2S3 NRs(Fig. 1),经二硫化硅涂覆后,Bi2S3@SiO2 NRs展示单发散性,SiO2壳层体积尺寸约为6 nm(Fig. 2)。
Fig. 1 Characterization of Bi2S3 NRs. (A) HAADF-STEM image and (B) HRTEM image of Bi2S3 NRs prepared by the solvothermal method. (C) Corresponding element mapping for Bi and S of the as-prepared Bi2S3 NRs. (D) EDS of the as-prepared Bi2S3 NRs.
Fig. 2 Characterization of Bi2S3@SiO2 NRs. (A) TEM image and (B) HRTEM image of as-prepared Bi2S3@SiO2 NRs. Inset: HAADF-STEM image of Bi2S3@SiO2 NRs. (C) Corresponding element mapping for Bi, S and Si of Bi2S3@SiO2 NRs. (D) EDS of Bi2S3@SiO2 NRs.
进行CT激光散斑分析一下得知,随着时间的推移Bi2S3@SiO2 NRs氧化还原电位增多,其HU值很深增多,同一渗透压下的HU值显著如果超过氢氧化钾钡,PAT数据信息随溶液浓度延长也呈线性网络成长影响(Fig. 3)。
Fig. 3 CT and PAT phantom images of Bi2S3@SiO2 NRs with different concentrations in vitro. (A) Plot of Hounsfield units (HU) values and of Bi2S3@SiO2 NRs and BaSO4 suspension versus the sample concentrations and CT phantom images of Bi2S3@SiO2 NRs and BaSO4 suspension samples with different concentrations. (B) Plot of the photoacoustic signal versus Bi2S3@SiO2 NRs concentrations and PAT phantom images of Bi2S3@SiO2 NRs aqueous solutions with different concentrations.
对Bi2S3@SiO2 NRs的生物工程相融性开始检测工具,察觉到16HBE与Bi2S3@SiO2 NRs共提升24 h后但是并如果没有显现出清晰的致癌性,以及该水粒子进到景色宜人隐杆线虫人体内后对其生命周期也如果没有清晰的损害,这就原因分析Bi2S3@SiO2 NRs有着特别好的生态学相溶性(Fig. 4)。
Fig. 4 Biosafety assessment of Bi2S3@SiO2 NRs by the C. Elegans model. (A) Bright field image of the NRs distribution in the GI tract of C. Elegans. Worms feed on NGM plates with Bi2S3@SiO2 NRs (1000 μg mL−1) transferred onto an agar pad after 1 h. (B) The distribution of food containing Bi2S3@SiO2 NRs (red arrows) in the intestine of the worm’s tail. (C) Effects of Bi2S3@SiO2 NRs with different concentrations on body length of C. Elegans. (D–H) Effects of Bi2S3@SiO2 NRs treatments on the accumulation of lipofuscin in age-synchronized worms. Representative fluorescent images of worms fed with 0, 1, 10, 100 and 1000 μg mL−1 Bi2S3@SiO2 NRs, respectively.
Bi2S3@SiO2 NRs以内服的方试入驻BALB/c裸鼠身体,能够 CT及PAT对Bi2S3@SiO2 NRs实施即时影像侦测,看见该阿尔法粒子可以通过直肠内道渐渐地流入结肠较后以尿液的结构废料身体,该过程中中对直肠内道的系统不会清晰的破损,证明Bi2S3@SiO2 NRs对组织机构无侵袭性受伤(Fig. 5, 6, 7)。
Fig. 5 CT imaging of the GI tract in vivo. In vivo X-ray CT imaging of the GI tractin BALB/c nude mice at different intervals after oral administration of Bi2S3@SiO2 NRs.
Fig. 6 Enlarged images of CT images of the GI tract of mice 30 min post oral administration of Bi2S3@SiO2 NRs.
Fig. 7 PAT imaging of the GI tract in vivo. PAT cross-sectional image of the GI tract of BALB/c nude mice at different intervals after oral administration of Bi2S3@SiO2 NRs: stomach (ST), small intestine (SI) and large intestine
wyf 04.02